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This work Is concerned with the analysis of the appearance of a single f’re- 
quency oscillation In a system of dynamic objects with a single degree of 
freedom of a determined type under the action of weak intercoupling. Differ- 
ent approaches to the solution of the synchronization problem are considered, 
and the regions of their applicability are Indicated. The necessary and suf- 
ficient conditions for the stability of synchronous oscillation are given for 
a system of essentially nonlinear different objects. For the particular case 
of almost Identical objects, these conditions coincide with the generalized 
Integral stability criterion [ 1 and 23. The general statement of the problem 
of synchronization of dynamic systems, numerous examples of synchronization 
which can be encountered In nature or in te+nology, and also an exhaustive 
bibliography, can be found in the work of Blekhman [l] . 

1, Let us consider a system composed of n dynamic objects having a sin- 

gle degree of freedom, and positions determined by the generalized coordi- 

nates 9, , . . . ,9" . We shall assume that the manner in which the generalized 

coordinates are introduced, Is dependent of the nature of the coupling bet- 

ween the objects. Thus the generalized coordinate q! must be considered as 

the generalized partial coordinate of the 6th object, without regard for 

the presence or absence of a coupling. 

Furthermore we shall assume that by examination of the coupled system, we 

can introduce the coupling parameter u which characterizes the degree of 

dlstorsion brought by the coupling to the motion of the object. Without 

making any special assumptions on the magnitude of the coupling parameter, 

we shall suppose that it Is sufficiently small. 

The coupling between the objects does not introduce further degrees of 

freedom, and, In the general case, gives to the objects a periodicai action 

of frequency v , external to the system. The partial objects, i.e. the 

objects In the absence of Interaction, are self-contained and represent sys- 

tems of material points subjected to stationary coupling. 
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With the given assumptions, the generalized Lagrange function of the coup- 
led system has the form 

L = *Y&i (!A, Qt.1 + !&I (q19 Q1’9 . . * t %I, %-A vt) + CL2 * * * (14 

In Expression (l.l), by virtue of the generality of the Introduction of 

the generalized coordinates, the partial Lagranglan L, Is Independent of 

the coupling parameter, and the Lagrangian L, Is only a function of the 

generalized partial coordinates and velocities of the system, and of the 

nondimensional time 7 = vt . 

Finally, we shall assume that the coupling between the objects has a 

purely conservative character with the accuracy up to the order $, and 

furthermore, that all nonpotential forces in the system do not depend expli- 

citly upon the time. 

Thus, a nonnegligible fraction of the generalized nonpotential force does 

not depend upon the coupling factor and has a partial character 

Qt = Qt (CJf1, G?. 

The generalized force Q1 characterizes the Inflow and outflow of exter- 

nal energy which gives to the object an autooscillating character. In th_ 

absence of coupling, only this force stabilizes the energy level, at which 

the motion of the object occurs. The generalized pulses 

t?L 
Pi = a4i’ ++++p... (i= 1, . . .) n) (1.2) 

introduced by the expression of the total kinetic energy of the system are 

dependent generally upon the type cf coupling. This dependence disappears 

(exactly up to the order p ) only In the case of potential or force coupling 

when aL, I dq,’ E 0. 

Therefore the generaljzed vel-cities obtained after transformation of the 

sysl em (1.2) by means of the new canonical variables 9,) p, (t = 1,. . ., n) 
can be represented In the general case in the form of a series of the small 

coupling parameter 

Pi = 
aJ+ hi9 VJ 

& (i = 1, . . . , n) 
i 

0.3) 

We shall substitute the series (1.3) In the generalized Hamilton function 

oi‘ a coupled system 

H = Ii Pi% - L = iglHL klfi, Pi) - I& (!71? 

V-4) 
Vl, * . * I %I, %I, r) + p’ * . . 

i=l 

i~twrc the partial Hamiltonian of the 5th object Is 

Ht = PiVi (qis Pt) - ~5 (%, vi) (i = 1, . . . , n) 0.5) 

Thus, the equation of motion of a coupled system of objects in the canon- 

ical l’orm is 
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GGaz =-pZ+p’..., Pi- + aHf 
K-Q~=~az+~a.. - 

(i=1,. . . , n) (1.6) 
2, If no potential forces & are applied, the motion of Isolated objects 

(p = 0) is described by a system of equations which can be broken down Into 

n inependent purely conservative subsystems 

qr3’= 
aH, (qf“, P,“, aH, (q”, pf”) 

+c. , p*“= - aqo , R) i (i = 1, . . (2.1) 
f 

Each subsystem (2.1) in some region 6, of the partial phase plane (p,p) 

has the general solution 

Qr” = G (4t9 s>, Pi0 = Yi (si, %I (2.2) 
of a libration or rotation type with a & period for its fundamental 

rapidly rotating phase 

$ = 6% (4 t + ai (2.3) 
in the sense that 

Zf (4% + 2% 4 = zi (4% 4 + ri, gf (qf + 2n, 4 = ?~t (4~. sf) (2.4) 

Furthermore, the yi do not depend upon the values sI, and the Hamllton- 

Ian function of the partial object H, (a,, pi ), as It can be easily shown, 

is y,-periodic In 9, for Y,# 0. 

The general solution of (2.2) inside the regicn Gi depends In a continu- 

ous manner upon the arbitrary phase shift Q,, and upon the parameter of 

energy, the integral of force s, introauced by the relation 

(2.5) 

The integral of force which is single-valued and continuous inside c, is 

related to the integral of energy H, (x, ,y, ) = h, (sl ) . 

The frequency of motion (angular velocity) of the object, which is intro- 

duced by the relation 

(2.6) 
in the general case depends upon the energetic level and can change Inside 

c, within a certain finite (or Infinite) Interval (frequency range) 

As we consider the system (1.6) which describes the motion of the coupled 

objects, we shall assume that the nonpotential functions Q,(ql,u,), the 

Lagranglan of coupling L, (ql, ZJ,, . . ., qn, v,,, z), as well as all the com- 

ponents of order equal or superior to pa, are bounded, analytic with respect 

to all their arguments, y,-periodic in their variables g1 and &-periodic 

in 7 inside a region of the 2a-dimensional phase space of the system, such 

that the pairs (q! ,p, ) are located Inside c1 . 
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3. Let us make in (1.6) the canonical transformation of variables 

Qi = % @Pi, Ji) Pi = yi @Pi, Jd 
which Is possible, since by virtue of (2.5) 

(i = 1, . . . , 72) (3. I) 

ax, aYi ay. ax* 
--__-2-= 
acp, aJ* a’pi a Ji 

4 (3.21 

We come to the following specific system with respect to the canonical 

variables “force-angle” 

Ji’ - ~iQi=~+~".... ‘pi --~(J~)+~iQi=-p~+pa.. . 

(i=l,. . * , n) (3.3) 

In the consideration of system (3.3), It is necessary to keep in mind, as 

a consequence of the small coupling, the synchronous mode is possible for the 

system, if, in the system consisting of the partial objects Isolated from 

one another it is possible to have motions which are from both the quantita- 

tive and the qualitative points of view, close to the real synchronous ones 

on a finite but sufficiently large interval of time. Then the generating 

system can always be 

required type (*). 

Let the frequency 

(&a) - Q) 

chosen such that It really admits a solution of the 

ranges of the objects be small 

= 0 (l-4 01 mt (Jd = 4 + ~1 ai’ (Jd (3.4) 

then, the system obtained from (3.3) for v = 0 has, in the general case, 

a multiple frequency mode characterized by the partial frequencies X,,...,A,. 

Its energetic level is stabilized by the action of the nonpotential forces 

4 I,..., C” * In such a case the synchronous generating solution can occur 

only when the condition 

is fulfilled. 
3L1 = . . . = & = v (3.5) 

If the frequency ranges of the objects are not small, the nonpotential 

forces in the partial objects begin to behave as frequency stabilizers. In 

order to have a synchronous solution of the generating system, some rigorous 

conditions must be imposed on them. 

In a system of essentially different objects, the synchronization is pos- 

sible if the stabilizing action of the nonpotential forces does not have an 

effect on the generating approximation, i.e. if it is small and, consequently, 

does not exceed the synchronizing actions transmitted by the coupling. Thus, 

it was natural to assume that the Inflow and outflow of energy into the par- 

tial object 
(3.6) 

are small. 

“) Considering here the generating system, we suppose that the complemen- 
tary terms of the order u can be separated from the left-hand side of 
Equations (3.3). 
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Therefore, the generating system of equations (3.3) coincides with (2.1) 

and admits a synchronous solution If the Intersection of the frequency ran- 

ges of the separate generating objects 

((#, &)) = ; ((Q), @p) 
i=l 

(3.7) 

is not empty and includes the frequency v of the external force. 

This last case Is very Important Indeed, because by applying to it the 
methods of the perturbation theory, we could trace the drift of the motion 
frequencies of the different objects while the synchronous mode builds up. 
On the contrary, the consideration of the lsochronous generating approxima- 
tion, for instance for the degenerated quasilinear formulation, leads essen- 
tially to the problem of the building up of phase shifts, amplitudes, and so 
on. 

The different particular cases of coupling of autoosclllatlng systems by 
means of small Internal forces, are related to the study of the lsochronous, 
generally linear generating approximation already considered in the lltera- 
ture [3 and 43. Thus, obviously, we could always register the absence of a 
synchronous mode for the system In khe case of essentially different partial 
frequencies. 

We shall consider the problem of the Interaction of essentially nonlinear 

objects when the system can adjust Itself to the external force frequency In 

a sufficiently large range determined by the equality (3.7). On the basis 

of this study, we shall write the equations of the motion of a coupled sys- 

tem of objects with respect to the new “phase-frequency” variables, which, 

according to (3.6) has the form 

+ pa . . _ 

P 
‘pi - Oi = - ki (q) 

-(%Fi+a+. . . 
&,+ (i = 1, . . . , n) (3.8) 

The transformation to ‘phase-frequency” variables, more characteristic of 

synchronization prqblems, does not contain singularities since everywhere In 

the phase domain of the system 

(3.9) 

4. First of all, generalizing somewhat the problem, we shall consider 

the Interaction of essentially nonlinear, almost conservative objects, 

described by the following system with a multldlmenslonal rapidly rotating 

phase 

0; = CLr, (cp, 0, z) + CL* . . .) (pi’ = 6% + p& (q4 0, r) + p* - * - (4.1) 

Here 

yi (cp, 0, %I = y, (cpl, * * -9 %I; %, * * -, w&i z) 

xi (cp, 0, 4 = x* (qh, * * -9 %I; @l, - * -3 %a; 4 (i=l,..., n) (4.2) 

are analytic In a certain domain 0 of the phase space of the system, have 

a & period with respect to the rapidly rotating phase ‘pl (t-l,..., n) 

and to the nondimensional time 7 = vt . 
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the 
The analysis of the system (4.1) is essentially possible on the basis of 
generalized averaging method developed lately in the work of Volosov [a. 

However some mathematical difficulties arise. Therefore we shall confine 
ourselves to the analysis of the synchronous mode ln the system and its small 
neighborhood for a sufficiently small g by using Polncarb's method. 

The generating system 

0' 
oi = 0, cpi? = oi" (i=I,._.,n) (4.3) 

has a general solution 

Oi 
0 
= Vi* vi0 = Vit + Ui (44 

which depends on al arbitrarily chosen variables vi and ai l 

The generating solution is characterized by 

VI = . . . =vn=v (4.5) 
and the phase shifts are single roots of the system C63 

pi b 19 l l -, 4 = i& Tyi IT + al, z + %t; Vlr 
(i = ; ,:.:‘n) 

. 4.) vn; z] dz = 0 (4.6) 
0 

The fulfilment of conditions (4.5) and (4.6) guarantees the existence of 

a solution of the system (4.1) having a $ period in t . Successive peri- 

odic approximations to this solution can be sought in the form of the series 

iOf = V + pi"' + p2 l l l 9 (pi = T + a( + pqi(l) + /k2.. . (4.71 

Analyzing the local stability of the synchronous motion (4.7) we shall 

write the equations of the varlatlons for the system (4.1) considered 

‘2 =Pjl[($)vj+ (‘g)uj]+P2... 

d$="i+P$ [($)Vj+ (z)Uj]+p2.., (4.9 
j=l 

Here the parentheses mean that the corresponding quantity is calculated 

for the generating approxlmatlon. Let us introduce the new variables 

Q = &iN~t, vi = &PI'& (4.9) 

where o(v) Is the characteristic exponent which we write In the present 

case [7] as a series 

a (p) = a#* + a# + a#‘~~ + /A’ . . . (4. IO) 

NOW, the purpose of the problem 1s the determination of the existence 

condltlons.of the periodic solution of the system 

(4.11) 



dvi 
‘dt = 4 - pa’/1 a,% + p { - a2vf + 5 [(z) Vj + 

j=l 

Ye shall seek for successive periodic approxlmatlons to the solutions of 

the system (4.11) ln the form of series 

U{ = UC + $+4{(l) + pu$B) + $11 . . . 

V{ = vi0 + p’h*(l) + pvI(B) + p” . . . (4.12) 

The general. periodic solution of the zero approximation equation 

du; I dt = 0, dvio I dt = uio (4.13) 

depends upon n arbitrary constants n, and has the form 

u*O = 0, v{' = Mi (4.14) 

the first approximation equation 

duJ1) / dt = 0, dvJ’) / dt = u{(l) - arMi (4.15) 

has always the periodical solution 

u{(l) = aIMi, vp = N{ (4.16) 

which depends on & constants ji, and R,. 

The periodic solution of the second apprOximatlOn equations (4.17) 

exists If 

i Mj(~-utd{j) = 0 (i=l,..., n) (4.18) 

and has the for? 
n 

UJa) = UlNi f u~M* + Dt - al’M{t f 2 Mj & 
j=l 

jjw{)dt 
(4.19) 

n 

vUi(a) = ci + D,t - alaM. t” x M. -!- 
%2 

i=l 
li?a. i [(Xi) + i Vi) dt] dt 

'0 0 

In Equation (4.19) the constants Ci are arbitrary and 

The condltlon of nontriviality of the solution of the system (4.18) 

I a& _- 
&ij 

u %3 1 ij = I 0 (4.21) 

Is used for determination of the first approximations to the real Character- 

istic exponents. 



242 fi.P.N.3gtW 

The existence condition of the periodic solution of the first group of 

the third approximation equations 

dui(t) i 
= alkyd. 1 -- 

dt 
a12tjij I Nj - 2ala2Mi - 

-~:_.i~-~)+~~~~~~~~.jrlx~)+~(Y*)d~]d~- (4.22) 
0 

can be brought to the form 

n ap, W - - al26,j) Nj = al 
j=l a9 [ 

2a2Mi - fJ (2 + 2) Mj] 
?=I j 

(4.23) 

0 

The presence of the periodic solution of the second group of the third 

approximation equations 1s guaranteed by the choice of proper integration 

constants when the system (4.22) Is Integrated. 

The second approximation to the characteristic exponents are determined 

from the conditions of solvability of the heterogeneous system (4.23) with 

respect to the unknown N, 

a2 = (2 i WMi*)-li,iI (% + 3) MjMi* 
i=1 

(4.25) 

The numbers M,* (t = 1, . . . , n) are a solution of the system which 1s 

coupled with the system (4.18) 

i M,* (3 - al~q = 0 (i=l,. . .) n) 

i=l 

(4.26) 

The synchronous mode of the system is asymptotlcaily stable If 

Rea,=O, Rea,<O 

5. Applying now the results obtained in the previous section, in the 

study of the synchronous solutions of the system (3.8), we write the basic 

equations which determine the generating phase shifts in the form 

Jsbl, . . . , &n) = &)(h + g$)=o (i = 1,. . . , n) (5.1) 

where 

fi = & r (J’,) ;2 @i, A (al, . . . , a,) = & ‘s” (Lo) dz (5.2) 
0 0 

Is the average work on a period of the nonpotential force of the partial 
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object and the integral of force of the coupling in the generating approxi- 

mation. 

The determinant of the system for the determination of the first approxi- 

mation to the characteristic exponents 

(5.3) 

can be written in the following symmetrical form: 

(fi ki (Y))-lI Zij - ki(Y) U,26ij 1 = 0 
i=l 

(5.4) 

A sufficient, but obviously nonnecessary condition for the roots of the 

determinant (5.4) (Im sf = 0)’ to be real is that at least one of the quad- 

ratic forms corresponding to the matrix 

II iii II 

or diag (kl (v), . . ., Ic, (v)), be positive or negative definite. The presence 

of a complex root is possible If there Is a simultaneous change in the sign 

of these forms; it Is characterized by an Identical transformation Into zero 

of the quantity 

5 ki (v)jMi12 
i=l 

computed for the given root. 

In the case of identical, purely conservative Ob JeCtS (k, (Y) =. . . - k, (V)=k) 

the necessary condition of stability u,~ < 0 reduces to the requirement of 

an extremum (maximum or minimum depending upon the sign of k ) for the lnte- 

gral of force of the coupling A and leads to the formulation of a general- 

ized integral stability criterion. The lntgral criterion can also be gene- 

ralized in the case of an internal synchronization for a system of almost 

identical objects of the considered type [2] 

The solution of the system 

+L ) 
. kjW 

a12iSii Mi* = 0 (5.5) 

coupled with (5.3) can obt?iusly be obtained from the solution of the system 

(5.3) In the following manner, 

Mj* = kj (Y) Mj (5.6) 

If, furthermore, we take into consideration that 

Ri (a,, - l -7 4 = - -!- (fi* + gi) 
ki (V) (5.7) 

where the quantities r,* are independent of the generating phase shifts, 

the expressions of the second oraer approximation of the characteristic expo- 

nents take the form 

a~= (2i b(Y) MiZ)-’ i [-&+&+$&j]M,Mj 
i=l i.i=l 1 j 3 1 
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It should be remembered that 

0 

(5.9) 

The fulfllment of the asymptotic stability condition c2< 0 Is thus only 

possible If nonconseratlve forces are present In the system. 

In a purely conservative system, the first approximations to the character- 

istic exponents do not change, but the second approximations become ldentl- 

tally equal to zero. 

We shall notice that In the particular degenerate case of a single object 

(n = 1) the conditions 02 existence and stability of a synchronous mode of 

the system are In agreement with the corresponding relations obtained by 

Kats [8]. 

The author is thankful to 1.1. Blekhman for his discussion of the work. 
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